
Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand

Khoury College of Computer Sciences

© 2022, released under CC BY-SA

CS 4530
Software Engineering
Lesson 10: Software Engineering & Security

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe that security is a spectrum, and be able to define a realistic

threat model for a given system

• Evaluate the tradeoffs between security and costs in software

engineering

• Recognize the causes of and common mitigations for common

vulnerabilities in web applications

• Utilize static analysis tools to identify common weaknesses in code

Outline:

1. What is a threat model?

2. What are the primary categories of threats for software systems?

3. Techniques for mitigating threats

4. Costs and tradeoffs of mitigations

Security as non-functional requirements
CIA: An overview of security properties

• Confidentiality: is information disclosed to unauthorized individuals?

• Integrity: is code or data tampered with?

• Availability: is the system accessible and usable?

Security isn't (always) free
In software, as in the real world…

• You just moved to a new house, someone just
moved out of it. What do you do to protect your
belongings/property?

• Do you change the locks?

• Do you buy security cameras?

• Do you hire a security guard?

• Do you even bother locking the door?

Security is about managing risk
Vocabulary

• Security architecture is a set of mechanisms and policies that we build into our
system to mitigate risks from threats

• Threat: potential event that could compromise a security requirement

• Attack: realization of a threat

• Vulnerability: a characteristic or flaw in system design or implementation, or in
the security procedures, that, if exploited, could result in a security
compromise

Security is about managing risk
Cost of attack vs cost of defense?

• Increasing security might:

• Increase development & maintenance cost

• Increase infrastructure requirements

• Degrade performance

• But, if we are attacked, increasing security might also:

• Decrease financial and intangible losses

• So: How likely do we think we are to be attacked in way X?

A Threat Model forces us to answer 3 key
questions:

• What is important to defend?

• Who do we trust?

• What processes do we institute to protect our code and data?

Thread Model: What is important to defend?
What value can an attacker extract from a vulnerability?

• What is being defended?

• What resources are important to
defend?

• Does our code contain any
sensitive data?

• What is the cost if that data is
breached or tampered with?

• Even if your code is not
“sensitive”: does it expose other
routes of attack?

Threat Model: Who do we trust?

• What entities or parts of system can be considered secure and trusted?

• Have to trust something!

• Never trust remote users (especially remote users!)

Threat Model: Processes

• What processes do we institute to protect our code and data?

• How often do we review our code for security?

• How often do we review our partners’ security practices?

Creating a Reasonable Threat Model
Best practices applicable in most situations

• Trust:

• Developers writing our code

• Server running our code

• Popular dependencies that we use and update

• Don’t trust:

• Code running in browser

• Inputs from users

• Practice good security practices:

• Encryption (all data in transit, sensitive data at rest)

• Code signing, multi-factor authentication

• Bring in security experts early for riskier situations

Part 2: Categories of Threats

1. Code that runs in an untrusted environment

2. Untrusted data flowing into our trusted codebase

3. Threats coming from the software supply chain (dependency on untrusted
code)

Threat: code that runs in an untrusted
environment

Threat: Code that runs in an untrusted
environment
Authentication code in a web application

function checkPassword(inputPassword: string){

if(inputPassword === 'letmein'){

return true;

}

return false;

}

Should this go in our frontend code?

Threat: Code that runs in an untrusted
environment
Authentication code in a web application

function checkPassword(inputPassword: string){

if(inputPassword === 'letmein'){

return true;

}

return false;

}

Frontend

Backend

Trust boundary

We control this side

Users might be malicious

Threat: Code that runs in an untrusted
environment

client page

(the “user”)
server

HTTP Request

HTTP Response

Do I trust that this request really

came from the user?

Do I trust that this response

really came from the server?

Do I trust the server to

give me the right

answer?
Do I trust the server to

not send my data

somewhere else?

Threat: Data controlled by a user flowing into our
trusted codebase

https://xkcd.com/327/

https://xkcd.com/327/

Threat: Data controlled by a user flowing into our
trusted codebase
Cross-site scripting (XSS)

Trusted Server

Malicious

JavaScript

Response

Trusted Server

app.get('/transcripts/:id', (req, res) => {

// req.params to get components of the path

const {id} = req.params;

const theTranscript = db.getTranscript(parseInt(id));

if (theTranscript === undefined) {

res.status(404).send(`No student with id = ${id}`);

}

{

res.status(200).send(theTranscript);

}

});

/transcripts/4

Cross-site scripting (XSS)

Threat: Data controlled by a user flowing into our
trusted codebase

Threat: Data controlled by a user flowing into our
trusted codebase
Cross-site scripting (XSS)

Trusted Server

/transcripts/abcd

app.get('/transcripts/:id', (req, res) => {

// req.params to get components of the path

const {id} = req.params;

const theTranscript = db.getTranscript(parseInt(id));

if (theTranscript === undefined) {

res.status(404).send(`No student with id = ${id}`);

}

{

res.status(200).send(theTranscript);

}

});

Threat: Data controlled by a user flowing into our
trusted codebase
Cross-site scripting (XSS)

Trusted Server

/transcripts/%3Ch1%3e…

app.get('/transcripts/:id', (req, res) => {

// req.params to get components of the path

const {id} = req.params;

const theTranscript = db.getTranscript(parseInt(id));

if (theTranscript === undefined) {

res.status(404).send(`No student with id = ${id}`);

}

{

res.status(200).send(theTranscript);

}

});

<h1>Congratulations!</h1>

You are the 1000th visitor to the

transcript site! You have been selected

to receive a free iPad. To claim your

prize <a

href='https://www.youtube.com/watch?v=D

LzxrzFCyOs'>click here!

<script language=“javascript”>

document.getRootNode().body.innerHTML=

'<h1>Congratulations!</h1>You are the

1000th visitor to the transcript site!

You have been selected to receive a

free iPad. To claim your prize <a

href="https://www.youtube.com/watch?v=D

LzxrzFCyOs">click here!’;

alert('You are a winner!’);

</script>

https://rest-

example.covey.town/tra

nscripts/%3Ch1%3ECo

ngratulations!%3C/h1%

3E You are the 1000th

…

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Threat: Data controlled by a user flowing into our
trusted codebase
Java code injection in Apache Struts (@Equifax)

CVE-2017-5638 Detail
Current Description
The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-message

generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a crafted Content-
Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in March 2017 with a Content-Type

header containing a #cmd= string.

Threat: Data controlled by a user flowing into our
trusted codebase
Java code injection in Log4J

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html

CVE-2021-44228 Detail
Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and

parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log
messages or log message parameters can execute arbitrary code loaded from LDAP servers when
message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with

2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net,
log4cxx, or other Apache Logging Services projects.
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Threat Category 3: Software Supply Chain
Do we trust our own code? Third-party code provides an attack vector

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-

cybersecurity-us-menn-decoder-podcast

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast

Part 3: Mitigating security threats in software
engineering

• For these threats:

• Threat category: Code that runs in an untrusted environment

• Threat category: Inputs that are controlled by an untrusted user

• Threat category: Software supply chain

• Recurring theme: No silver bullet

Threat Mitigation: Trusted Code

client page

(the “user”)
server

HTTP Request

HTTP Response

Do I trust that this request really

came from the user?Do I trust that this response

really came from the server?

Threat Mitigation: Trusted Code

client page

(the “user”)
server

HTTP Request

HTTP Response

Do I trust that this request really

came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor

“black hat”

Might be “man in the middle”

that intercepts requests and

impersonates user or server.

Threat Mitigation: Trusted Code
Preventing the man-in-the-middle with SSL

client page

(the “user”)
server

HTTP Request

HTTP Response

amazon.com certificate

(AZ’s public key + CA’s sig)

http://amazon.com

Threat Mitigation: Trusted Code
Preventing the man-in-the-middle with SSL

client page

(the “user”)
server

HTTP Request

HTTP Response

amazon.com certificate

(AZ’s public key + CA’s sig)

Encrypted request

Encrypted response

http://amazon.com

SSL: A perfect solution?
Certificate authorities

• A certificate authority (or CA) binds some public key to a real-world entity that
we might be familiar with

• The CA is the clearinghouse that verifies that amazon.com is truly
amazon.com

• CA creates a certificate that binds amazon.com's public key to the CA’s public
key (signing it using the CA’s private key)

http://amazon.com
http://amazon.com
http://amazon.com

Asymmetric encryption: aka public key/private
key

• Each actor creates two keys:

• A public key, which it publishes. This tells the world: if you want to send a
private message to me, encrypt it with this key. Then only I can decode it.

• A private key, which it keeps secret. The private key is what the actor uses
to decode the messages that are processed by the public key.

• When a node B wants to send a
message to node A, it obtains A’s public
key and uses it to encrypt the message

• Only A can decrypt the message using
its private key

• Computationally expensive; usually only
used for authentication

Asymmetric encryption, aka public key/private key

33

cyphertext C

K%U@Y…

EKpubA(P)

plaintext P

ABCDE…

plaintext P

ABCDE…

cyphertext C

K%U@Y…

DKprivA(P)

node A

• Encrypt with public key: only private key holder can decrypt

Public/Private Key Encryption

34

Public Key Private Key

Plain text

Message

Encrypted

Message

Plain text

Message

• Encrypt with private key: anyone with public key can decrypt and be confident
about who sent it.

asymmetric encryption can be used for
authentication, too

35

Public KeyPrivate Key

Plain text

Message
Signed Message

Plain text

Message

Certificate Authorities issue SSL Certificates
Certificate Authority

Amazon

amazon.com

public key

CA private key

amazon.com

private key
CA public key

Some real-world

proof that we are

really amazon.com

My Laptop

CA private key
amazon.com certificate

(AZ’s public key + CA’s sig)

amazon.com

public key

amazon.com certificate

(AZ’s public key + CA’s sig)

CA public key

http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities are Implicitly Trusted

• Note: We had to already know the CA's public key

• There are a small set of “root” CA’s (think: root DNS servers)

• Every computer/browser is shipped with these root CA public keys

Should Certificate Authorities be Implicitly
Trusted?
Signatures only endorse trust if you trust the signer!

• What happens if a CA is compromised,
and issues invalid certificates?

• Not good times.

Threat Mitigation: Untrusted Inputs
Restrict inputs to only “valid” or “safe” characters

• Special characters like <, >, ‘, “ and `
are often involved in exploits involving
untrusted inputs

• Simple fix: Prohibit such inputs using
input validation

Threat Mitigation: Untrusted Inputs

• Sanitize inputs – prevent them from being executable

• Avoid use of languages or features that can allow for remote code execution,
such as:

• eval() in JS – executes a string as JS code

• Query languages (e.g. SQL, LDAP, language-specific languages like OGNL
in java)

• Languages that allow code to construct arbitrary pointers or write beyond a
valid array index

Threat Mitigation: Software Supply Chain
Consider threats at each phase

In-house code

External

dependencies

Build process
Operating

environment

Distribution

process

(including

updates)

Threat Mitigation: Software Supply Chain
Process-based solutions for process-based problems

• External dependencies

• Audit all dependencies and their updates before applying them

• In-house code

• Require developers to sign code before committing, require 2FA for signing keys,
rotate signing keys regularly

• Build process

• Audit build software, use trusted compilers and build chains

• Distribution process

• Sign all packages, protect signing keys

• Operating environment

• Isolate applications in containers or VMs

Weak Links in Software Supply Chain
2021 NCSU/Microsoft Study

• 8,498 NPM packages are maintained by at least one maintainer whose email
address is inactive and could be purchased

• 33,249 NPM packages include installation scripts that can be exploited to run
arbitrary code on developers’ machines at installation-time

• 5,645 NPM packages are not actively maintained

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas

Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, Laurie Williams

https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

Part 4: Which threats to protect against, at what
cost?

• Performance:

• Encryption is not free

• Preventing buffer overruns is not free

• “Safe” languages like TS are usually (but not always) slower than optimized C.

• Expertise:

• It is easy to try to implement these measures, it is hard to get them right

• Financial:

• Implementing these measures takes time and resources

Consider various costs:

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Broken authentication + access control

• Cryptographic failures

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)

• Weakly protected sensitive data

• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Mitigations for Broken Authentication + Access
Control

• Implement multi-factor authentication

• Implement weak-password checks

• Apply per-record access control

• Harden account creation, password reset pathways

https://auth0.com

Auth0

OWASP #1

Don’t do this at home!

Use a trusted

component instead

https://auth0.com/

Cryptographic Failures

• Enforce encryption on all communication

• Validate SSL certificates; rotate certificates
regularly

• Protect user-data at rest (passwords, credit
card numbers, etc)

• Protect application “secrets” (e.g. signing
keys)

OWASP #2

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

Static Analysis can help detect secrets at rest in a
repo
GitGuardian (Launched in 2017)

https://www.gitguardian.com/

Cryptographic Failures
Secret detection tools are not enough

• Industrial study of secret detection tool in a large software services company
with over 1,000 developers, operating for over 10 years

• What do developers do when they get warnings of secrets in repository?

• 49% remove the secrets; 51% bypass the warning

• Why do developers bypass warnings?

• 44% report false positives, 6% are already exposed secrets, remaining are
“development-related” reasons, e.g. “not a production credential” or “no
significant security value”

“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”
Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams

https://link.springer.com/article/10.1007/s10664-021-10109-y

These are process-related

issues and so require

process-related solutions.

https://link.springer.com/article/10.1007/s10664-021-10109-y

Cryptographic Failures
Secret management tools (“Vaults”) centralize points of failure, and automates:

• Authorizing access to secrets

• Providing time-limited secrets

• Audit secret access

Example platform: HashiCorp Vault (open source, or cloud-hosted)

https://learn.hashicorp.com/tutorials/vault/getting-started-intro?in=vault/getting-started

https://learn.hashicorp.com/tutorials/vault/getting-started-intro?in=vault/getting-started

Code Injection
OWASP #3

• Sanitize user-controlled inputs (remove
HTML)

• Use tools like LGTM to detect vulnerable
data flows

• Use middleware that side-steps the
problem (e.g. return data as JSON, client
puts that data into React component)

Detecting Weaknesses in Apps with Static Analysis

LGTM + CodeQL

https://lgtm.com

https://lgtm.com/

Weakly Protected Sensitive Data
OWASP #4

• Classify your data by sensitivity

• Encrypt sensitive data - in transit and at rest

• Make a plan for data controls, stick to it

• Software engineering fix: can we avoid storing sensitive data?

• Payment processors: Stripe, Square, etc

Using Components with Known Vulnerabilties
OWASP #5

Dependabot will also send you an email

Using Components with Known Vulnerabilties
Static analyses are imperfect

• Study: Vulnerable dependencies reported on a large, open source project,
OpenMRS. Compare results across tools.

“A comparative study of vulnerability reporting by software composition analysis tools ”
Nasif Imtiaz, Seaver Thorn and Laurie Williams

https://dl.acm.org/doi/10.1145/3475716.3475769

https://dl.acm.org/doi/10.1145/3475716.3475769

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe that security is a spectrum, and be able to define a realistic

threat model for a given system

• Evaluate the tradeoffs between security and performance in software

engineering

• Recognize the causes of and common mitigations for common

vulnerabilities in web applications

• Utilize static analysis tools to identify common weaknesses in code

Appendix: details of the XSS exploit
Step 1:

User input:

/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E You are the 1000th visitor to
the transcript site! You have been selected to receive a free iPad. To claim your prize
%3Ca
href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3
E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.in
nerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th
%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selec
ted%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%2
0%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclic
k%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

XSS Details: step 2

The code on the original slide

sends the following response:

No student with id =

<h1>Congratulations!</h1>

You are the 1000th visitor to the transcript site! You have been selected to receive a free iPad. To claim your prize

click here!

<script language="javascript">

document.getRootNode().body.innerHTML = '<h1>Congratulations!</h1>You are the 1000th visitor to the transcript
site! You have been selected to receive a free iPad. To claim your prize click here!';

alert('You are a winner!');

</script>

app.get('/transcripts/:id', (req, res) => {

// req.params to get components of the path

const {id} = req.params;

const theTranscript = db.getTranscript(parseInt(id));

if (theTranscript === undefined) {

res.status(404).send(`No student with id = ${id}`);

}

{

res.status(200).send(theTranscript);

}

});

XSS Step 3 (Chrome)

Chrome executes that javascript code, starting at

document.getRootNode().body.innerHTML =

which replaces the entire page contents with the message, removing the “No
student with id = ” part from the browser, and also rendering the popup “You
are a winner”

XSS Step 3 (Safari)

Safari refuses to execute the <script> block, so it renders a page that

looks like this (still bad, but less bad than Chrome):

