CS 4530
Software Engineering

Lesson 10: Software Engineering & Security

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand

Khoury College of Computer Sciences
© 2022, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe that security Is a spectrum, and be able to define a realistic
threat model for a given system

* Evaluate the tradeoffs between security and costs In software
engineering

* Recognize the causes of and common mitigations for common
vulnerabilities in web applications

* Utllize static analysis tools to identify common weaknesses in code

Outline:

1. What Is a threat model?

2. What are the primary categories of threats for software systems?
3. Technigues for mitigating threats

4. Costs and tradeoffs of mitigations

Security as non-functional requirements

CIA: An overview of security properties

* Confidentiality: Is information disclosed to unauthorized individuals?
* Integrity: Is code or data tampered with?

* Avallabllity: is the system accessible and usable?

Security iIsn't (always) free

In software, as in the real world...

°* You just moved to a new house, someone just
moved out of it. What do you do to protect your
belongings/property?

°* Do you change the locks?

* Do you buy security cameras?

°* Do you hire a security guard?

°* Do you even bother locking the door?

Security Is about managing risk

Vocabulary

* Security architecture Is a set of mechanisms and policies that we build into our
system to mitigate risks from threats

* Threat: potential event that could compromise a security requirement

e Attack: realization of a threat

* Vulnerability: a characteristic or flaw In system design or implementation, or in
the security procedures, that, If exploited, could result in a security
compromise

Security Is about managing risk

Cost of attack vs cost of defense?

* |[ncreasing security might:
* Increase development & maintenance cost
* Increase Infrastructure requirements
* Degrade performance
* But, If we are attacked, increasing security might also:
* Decrease financial and intangible losses

* So: How likely do we think we are to be attacked in way X?

A Threat Model forces us to answer 3 key
guestions:

* What Is important to defend?
* Who do we trust?

* What processes do we institute to protect our code and data?

Thread Model: What Is important to defend?

What value can an attacker extract from a vulnerability?

* What is being defended? T
* What resources are important to ! ;:E-' N
d@fend? " _ .-, X e ° | | ol :
* Does our code contain any "
sensitive data?

* What Is the cost If that data Is
breached or tampered with?

* Even If your code Is not

routes of attack?

Threat Model: Who do we trust?

* What entities or parts of system can be considered secure and trusted?

* Have to trust something!

* Never trust remote users (especially remote users!)

Threat Model: Processes

* What processes do we institute to protect our code and data?
* How often do we review our code for security?

* How often do we review our partners’ security practices?

Creating a Reasonable Threat Model

Best practices applicable in most situations

* Trust:
* Developers writing our code
* Server running our code
* Popular dependencies that we use and update
* Don't trust:
* Code running In browser
* Inputs from users
* Practice good security practices:
* Encryption (all data in transit, sensitive data at rest)
* Code signing, multi-factor authentication
* Bring In security experts early for riskier situations

Part 2: Categories of Threats

1. Code that runs in an untrusted environment
2. Untrusted data flowing into our trusted codebase

3. Threats coming from the software supply chain (dependency on untrusted
code)

Threat: code that runs In an untrusted
environment

Open Link in New Window
Open Link in Incognito Window
I4 Save Link As...

L Jicony;LinkAddroee S
I4 Saye Image As...
[,) Copy Image URL
Copy/ Imaga
(3 Openimagein Newb

Threat: Code that runs In an untrusted

environment
Authentication code in a web application

function checkPassword (inputPassword: string) {
i1f (1nputPassword === 'letmein') {
return true;

J

return false;

J

Should this go in our frontend code?

Threat: Code that runs In an untrusted

environment
Authentication code in a web application

/-|:r Frontend | ‘
Users might be malicious

Trust boundary =— =— =— = = = == — — — — — — - -

We control this side

IIIHHHH%H!II

function checkPassword (inputPassword: string) {
i1f (1nputPassword === 'letmein') {
return true;

J

return false;

J

Threat: Code that runs In an untrusted

environment
HTTP Request | -

O Do | trust that this request really
came from the user?

Do | trust that this response
really came from the server?

e

Do | trust the server to
give me the right
answer?

server

Do | trust the server to
not send my data
somewhere else?

HI, THIS 1S

YOUR SON'S SCHOOL.

WERE HAVING SOME
COMPUTER TROUBLE.

i%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWH’F /

S

Threat: Data controlled by a user flowing into our
trusted codebase

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TRBELE Students:—- 7

~ OH. YES. LUTTLE
ROBRY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEAR'S STUDENT RECORDS.
T HOPE YPURE HAPFY.

‘I! AND I HOPE

“~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE. INPUTS.

https://xkcd.com/327/

https://xkcd.com/327/

Threat: Data controlled by a user flowing into our

trusted codebase
Cross-site scripting (XSS)

Malicious

JavaScript
Response

®ece & https:// mpl : X 4+
0O & https://rest-example.covey.tov X +
< C @& rest-exampl y.town/tra % R e
< C @ rest-example.covey.town/trans... Yr % e :
{ ":{"s tName":" }
[{ ":"De 00}1} .
Congratulations!

You are the 1000th visitor to the transcript site! You have been selected to
receive a free 1Pad. To claim your prize click here!

Threat: Data controlled by a user flowing into our

trusted codebase S _
Cross-site scripting (XSS) g parame. Lo Got somonemts of the path

O

const {1d} = reqg.params;
const theTranscript = db.getTranscript(parselnt(i1d));
if (theTranscript === undefined) ({

res.status (404) .send(No student with id = s${id}) ;

J

[transcripts/4 {

—

res.status (200) .send (theTranscript);

}
b) s

0O & https://rest-example.covey.tov X +

& C @ rest-example.covey.town/trans... Y¢ » e : |

{"student":{"studentID":4, "studentName":"casey"}, "grades":
[{"course":"DemoClass", "grade":100}]}

Threat: Data controlled by a user flowing into our

trUSted COdebase app.get('/transcripts/:id', (req, res) => {
CrOSS'SIte Scrlptlng (XSS) // reqg.params to get components of the path

const {1d} = reqg.params;
const theTranscript = db.getTranscript(parselnt(id));
if (theTranscript === undefined) {

O res.status (404) .send ("No student with id = ${id}");
}

{

/transcripts/abcd |
res.status (200) .send (theTranscript);

—

L N @ https://rest-example.covey.tov X +
& C' @ rest-example.covey.town/trans... Yr W e :

No student with id = abcd

Threat: Data controlled by a user flowing into our

trusted codebase
Cross-site scripting (XSS)

O

| NON C nttps://rest-example.covey.tov X

rest-example.covey.town says

You are a winner!

Waiting for rest-example.... |

+

& X @& rest-example.covey.town/trans... Y % e :

app.get('/transcripts/:id', (req, res) => {
// reqg.params to get components of the path
const {1d} = reg.params;
const theTranscript db.getTranscript (parselInt(id));
if (theTranscript undefined) {
res.status (404) . (' No student with id = S$S{id}) ;

res.status (200 heTranscript);

<hl>Congratulations!</hl>
You are the 1000th visitor to the
transcript site! You have been selected
to receive a free 1Pad. To claim your
prize <a
href="'https://www.youtube.com/watch?v=D
LzxrzFCyOs'>click here!
<script language="javascript”’>
document.getRootNode () .body.1nnerHTML=
'<hl>Congratulations!</hl>You are the
1000th visitor to the transcript site!
You have been selected to receive a
free 1Pad. To claim your prize <a
href="https://www.youtube.com/watch?v=D
LzxrzFCyOs'">click here!’;
alert ('You are a winner!’);
</secript>

| NON @ https://rest-example.covey.tov X 4

&< C @ rest-example.covey.town/trans... Yt » e :

Congratulations!

You are the 1000th visitor to the transcript site! You have been selected to
receive a free iPad. To claim your prize click here!

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Threat: Data controlled by a user flowing into our

trusted codebase
Java code injection in Apache Struts (@Equifax)

EQU’FAX ' @ English § Return to equifax.com»

2017 Cybersecurity Incident &
Important Consumer Ipfaea

NEWS

Equifax Says Cybersecurity Breach Has Cost

Need help? Contact Us [Billion

000
I

CVE-2017-5638 Detail
Current Description

The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-message
generation during file-upload attempts, which allows remote attackers to @Xecute arbitra ry commands via a crafted Content-

Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in March 2017 with a Content-Type

header containing a #cmd= string.

Threat: Data controlled by a user flowing into our

trusted codebase
Java code Injection in Log4J

IIIIII
“““““

A
LY
A
Mar 8, 2022 : “““
A

cxremely e Loga alneraity APT41 COMPROMISED
e SIX U.S. STATE
GOVERNMENT

CVE-2021-44228 Detail

Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and

parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log
messages or log message parameters can execute arbitrary code loaded from LDAP servers when

The Apache Software Fo INE€SSAZE Iookup substitution is enabled. From logsj 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with

actively exploited zero-da 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net,
Apache Log4j Java-basec log4cxx, or other Apache Logging Services projects.
execute malicious code a https://nvd.nist.gov/vuln/detail/CVE-2021-44228

systems.

s s s s s g e e m AT m i e s S e s s s = v s s as

networks between May and February in a “deliberate campaign” that
reflects new attack vectors and retooling by the prolific Chinese state-
sponsored group.

https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html

https://duo.com/decipher/apt41-compromised-six-state-government-networks

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Threat Category 3: Software Supply Chain

Do we trust our own code? Third-party code provides an attack vector

@ ESL"’]t Q Search the docs... User guide~ Deve

Postmortem for Malicious
Packages Published on July 12th,
2018

Summary

On July 12th, 2018, an attacker compromised the npm account of an ESLint maintainer
and published malicious versions of the eslint-scope and eslint-config-
eslint packages to the npm registry. On installation, the malicious packages
downloaded and executed code from pastebin.com which sent the contents of the
user's .npmrc file to the attacker. An .npmrc file typically contains access tokens for
publishing to npm.

The malicious package versions are eslint-scope@3.7.2 and eslint-config-
eslint@5.0.2, both of which have been unpublished from npm. The pastebin.com
paste linked in these packages has also been taken down.

npm has revoked all access tokens issued before 2018-07-12 12:30 UTC. As a result, all
access tokens compromised by this attack should no longer be usable.

The maintainer whose account was compromised had reused their npm password on
several other sites and did not have two-factor authentication enabled on their npm
account.

We, the ESLint team, are sorry for allowing this to happen. We

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

T N T =TT T T T T T T %I =TT

HARD LESSONS OF THE SOLARWINDS HACK

Cybersecurity reporter Joseph Menn on the massive
breach the US didn’t see coming

By l

| Jan 26, 2021, 9:13am EST

f Y (77 sHare

into a network

n December, details came out on one of the most massive
breaches of US cybersecurity in recent history. A group of
hackers, likely from the Russian government, had gotten

manaaement comopanv called SolarWinds and

infiltrated its cu

https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-

to breach ever

cybersecurity-us-menn-decoder-podcast

TP N Py s il G2 = G = IC\ TR Sareese e =Nioin = peflte= Ses =Sngiiosetn . SSagiess =k

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast

Part 3: Mitigating security threats in software
engineering

* For these threats:
°* Threat category: Code that runs Iin an untrusted environment
* Threat category: Inputs that are controlled by an untrusted user
* Threat category: Software supply chain

* Recurring theme: No silver bullet

Threat Mitigation: Trusted Code

HTTP Request

O

HT TP Response

client page
‘@ 2 server
(the “user”)
_ Do | trust that this request really
Do | trust that this response came from the user?
really came from the server? — —

N — e EE———

Th reat M |t| g atl (Might be “man in the middle” e

that intercepts requests and
Impersonates user or server.

30— - ﬁ

HTTP Request
: v HTTP Request

HTTP Response

HTTP Response

malicious actor

client page “ ”
(the “user”) black hat server
Do | trust that thi Do | trust that this request really
O HLSL Mk TS TESPOnSE came from the user?
really came from the server?

ﬁ

Threat Mitigation: Trusted Code

Preventing the man-in-the-middle with SSL

O

H

client page .‘

(the “user”) amazon.com certificate
(AZ’s public key + CA’s sig)

HTTP Request

HT TP Response

server

http://amazon.com

Threat Mitigation: Trusted Code

Preventing the man-in-the-middle with SSL

HTTP Request

O Encryp

HT TP Response

Encrypted response

A n

Your connection is not private o S e rve r
Attackers might be trying to steal your information from 192.168.18.4 (for example, passwords, am azo n. C O m C ert | fl C ate
messages, or credit cards). Learn more (AZ!S pu bl ic key + CAJS sig)

NET::ERR_CERT_AUTHORITY_INVALID

http://amazon.com

SSL: A perfect solution?

Certificate authorities

* A certificate authority (or CA) binds some public key to a real-world entity that
we might be familiar with

°* The CA Is the clearinghouse that verifies that amazon.com is truly
amazon.com

* CA creates a certificate that binds amazon.com's public key to the CA’s public
key (signing it using the CA'’s private key)

http://amazon.com
http://amazon.com
http://amazon.com

Asymmetric encryption: aka public key/private
key

* Each actor creates two keys:

* A public key, which it publishes. This tells the world: If you want to send a
private message to me, encrypt it with this key. Then only | can decode it.

* A private key, which it keeps secret. The private key Is what the actor uses
to decode the messages that are processed by the public key.

Asymmetric encryption, aka public key/private key

* \When a node B wants to send a

message to node A, it obtains A's public
key and uses It to encrypt the message

°* Only A can decrypt the message using

Its private key

* Computationally expensive; usually only

used for authentication

33

cyphertext C plaintext P

K%U@Y.... ABCDE...

plaintext P
ABCDE...

O =
cyphertext C

K%U@Y... node A

Public/Private Key Encryption

* Encrypt with public key: only private key holder can decrypt

Public Key Private Key

Plain text Encrypted Plain text
Message Message Message

34

asymmetric encryption can be used for
authentication, too

* Encrypt with private key: anyone with public key can decrypt and be confident

about who sent It.
- Key

Plain text Sianed Messade Plain text
Message J J Message

Certificate Authorities iIssue SSL Certificates

Certificate Authority

M

amazon.com certificate
(AZ’s public key + CA'’s siq)

My Laptop

Some - yorld

proof tb [‘e are
really amazon.com

http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities are Implicitly Trusted

* Note: We had to already know the CA's public key
* There are a small set of “root” CA's (think: root DNS servers)

* Every computer/browser is shipped with these root CA public keys

Safari is using an encrypted connection to cs.gmu.edu.

Encryption with a digital certificate keeps information private as it's sent to or from the

_ ﬁ https website cs.gmu.edu.
L e

=, USERTrust RSA Certification Authority
“ L InCommon RSA Server CA

= - cs.gmu.edu

cs.gmu.edu
' lssued by: InCommon RSA Server CA
Expires: Saturday, December 1, 2018 at 5:59:59 PM Eastern Standard Time

* Trust
» Details

? Hide Certificate 0K

Should Certificate Authorities be Implicitly

Trusted?
Signatures only endorse trust If you trust the signer!

* What happens if a CA Is compromised, Security
and issues invalid certificates? Fuming Google tears Symantec a new
one over rogue SSL certs
* Not good times. We've got just the thing for you, Symantec ...
By lain Thomson in San Francisco 29 Oct 2015 at 21:32 36() SHARE Y
Security

Comodo-gate hacker brags about
forged certificate exploit

Tiger-blooded Persian cracker boasts of mighty
exploits

Gooale has read the riot act to Svmantec. scoldina the securitv biz for its

Threat Mitigation: Untrusted Inputs

Restrict inputs to only “valid” or “safe” characters

L 1

* Special characters like <, >, ', “and

are often involved in exploits involving Create password
u ntFUSted |n DUtS Please create your password. Click here to read our password security policy.

Your password needs to have:

o Slmple le Prohlblt SUCh |nputs US|ng v’ At least 8 characters with no space

v’ At least 1 upper case letter

In pUt Va.l |dat|0n v Aflleast 1 number

At least 1 of the following special characters from | # $ A * (other special characters are not
supported)

A Your password must contain a minimum of 8 characters included with at
least 1 upper case letter, 1 number, and 1 special character from !, #, %, ,
and * (other special characters are not supported).

Threat Mitigation: Untrusted Inputs

* Sanitize inputs — prevent them from being executable

* Avoid use of languages or features that can allow for remote code execution,
such as:

* eval() In JS — executes a string as JS code

* Query languages (e.g. SQL, LDAP, language-specific languages like OGNL
In java)

* Languages that allow code to construct arbitrary pointers or write beyond a
valid array index

Threat Mitigation: Software Supply Chain

Consider threats at each phase

-/ =t

Threat Mitigation: Software Supply Chain

Process-based solutions for process-based problems

* External dependencies
* Audit all dependencies and their updates before applying them
* In-house code

* Require developers to sign code before committing, require 2FA for signing keys,
rotate signing keys regularly

* Build process

* Audit build software, use trusted compilers and build chains
* Distribution process

* Sign all packages, protect signing keys
* Operating environment

* |solate applications in containers or VMs

Weak Links In Software Supply Chain

2021 NCSU/Microsoft Study

* 8,498 NPM packages are maintained by at least one maintainer whose emall
address Is Inactive and could be purchased

* 33,249 NPM packages include installation scripts that can be exploited to run
arbitrary code on developers’ machines at installation-time

* 5,645 NPM packages are not actively maintained

14,892 | 5,645 3,313 1,108 . Access to 891
maintainers : 15 domains | |
. Packages . packages | | domains | (‘ packages |
: Maintainer Domain Purchgse Take over
popular Inactive ' : domain and
Email track in npm
packages packages . alter the
address registrar account
MX record
. J 9 J \. > \. J . J _ J

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas
Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, Laurie Williams
https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

Part 4. Which threats to protect against, at what

Eg)r%%)er various costs:

* Performance:
* Encryption Is not free
* Preventing buffer overruns is not free
* "Safe” languages like TS are usually (but not always) slower than optimized C.
* EXpertise:
* |tIs easy to try to Implement these measures, it Is hard to get them right
* Financial:

* Implementing these measures takes time and resources

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

* Broken authentication + access control
* Cryptographic failures

* Code Injection (various forms - SQL/command line/XSS/XML/deserialization)

* Weakly protected sensitive data

* Using components with known vulnerabillities

https://owasp.org/www-project-top-ten/

Mitigations for Broken Authentication + Access

SWRLFI,

* Implement multi-factor authentication

* Implement weak-password checks

AuthO

* Apply per-record access control

* Harden account creation, password reset pathways

Don’t do this at home!
Use a trusted
component instead

https://authO.com

https://auth0.com/

Cryptographic Fallures

OWASP ;

* Enforce encryption on all communication

* Validate SSL certificates: rotate certificates

regularly

* Protect user-data at rest (passwords, credit
card numbers, etc)

* Protect application “secrets” (e.g. signing

keys)

2

| Amazon | Facebook | Twitter | Bitly | Flickr | Foursquare | Google | LinkedIn | Titanium |

Total candidates 1,241 1,477 28,235 3,132 | 159 326 414 1,434 1,914
Unique candidates | 308 460 6,228 616 89 177 225 181 1,783
Unique % valid 93.5% 71.7% 95.2% 88.8% | 100% |97.7% 96.0% | 97.2% 99.8%

Table 5: Credentials statistics from June 22, 2013 and validated on November 11, 2013. A credential may consist of an ID

token and secret authentication token.

b Playdrone

AKIA®

416 Files / 8.98 MB (ES took 0.131s)

Android Package Path

10 files per page _j

«— Previous 1723456789 ... 41 42 Next —

Line

public static final String AMAZON KEY ID = "AKIA

an BasicAWSCredentials localBasicAWSCredentials = new BasicAWSCredentials("AKIA Ve TECIFILD
h a ("AWSAccessKeyId=AKIA)).append(“"AssociateTag=mariuiorda
20&").toString())).append("ItemPage=1&").toString())).append("Keywords=").append(str2).append("&").to5t
ast.jz ("AWSAccessKeyId=AKIA ")) .append("AssociateTag=mariuliorda
20&") .toString())).append("ItemPage=1&").toString())).append("Keywords=").append(str2).append("&").toSt
FluDa final String accessKeyId = "AKIA
FluDa private SimpleDB simpleDBClient = new SimpleDB("AKIA ", "25FJvKg5ilbLnmBrSqGw@@DwgolBbaN

8akIaB8bl/2mlpdLWyqTbNPFkeNN533CAvtug4dRLPDo5ZtckU/JFBRAVo1/HXGSE9jplj3skcexk75t0gUIr/sIX18nV+TxPMHBLAQQ
/BK1BIFB+Af4KyZtpkKPz9+cVLB]jIDAAKjRk]jaKAAAAAAAAAAAAUKAUBRWY2Z06hoeHh5XP5zUONKRXXnmFIwUQA4cPH9ah04fU3dl
String strl = work@3(paramString, "", "AKIAJ , "ecs.amazonaws.jp", "AtxeExfl7HIbQhDlb4mc
protected AmazonSimpleDBClient sdbClient = new AmazonSimpleDBClient(new BasicAWSCredentials("AKIA

private String awsAccessKeyId = "AKIA

java private String awsAccessKeyId = "AKIA

«— Previous 123456789... 41 42 Next —

Figure 9: PLAYDRONE’s web interface to search decompiled sources showing Amazon Web Service tokens found in 130 ms.

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

Static Analysis can help detect secrets at rest in a
&%egardian (Launched in 2017)

0 SIGN UP FOR FREE
Internal Monitoring

@Gitcuardian Products v Pricing Resources v Getademo]

Activity

PUSM EVENTS PUE EVENTS® COMMITS
| 77 | 2 | 153

Automated
secrets detection
& remediation

Monitor public or private source code, and other
data sources as well. Detect API keys, database
credentials, certificates, ...

Javid Héraulr

Schedule a demo

......

m alaolia 3 dachlane U3 DATADOG S RENECVYS \WVAVESTONE

https://www.gitguardian.com/

These are process-related

CryptOg raphic Fallures ISsues and so reqguire

Secret detection tools are not enough process-related solutions.

* Industrial study of secret detection tool in a large software services company
with over 1,000 developers, operating for over 10 years

* What do developers do when they get warnings of secrets In repository?
* 49% remove the secrets; 51% bypass the warning
* Why do developers bypass warnings?

* 449% report false positives, 6% are already exposed secrets, remaining are
“development-related” reasons, e.g. “not a production credential” or “no
significant security value”

“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”
Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams
https://link.springer.com/article/10.1007/s10664-021-10109-y

https://link.springer.com/article/10.1007/s10664-021-10109-y

Cryptographic Fallures

Secret management tools (“Vaults”) centralize points of failure, and automates:

* Authorizing access to secrets

* Providing time-limited secrets

* Audit secret access

Azure

Google
Cloud

AWS

Alibaba
Cloud

Oracle
Cloud

Custom

Token

o

® &

Example platform: HashiCorp Vault (open source, or cloud-hosted)

Clients
Humans or Machines

LDAP, ——

Okta, [_@)' [T } Key/Value
RADIUS o —
& A
Kubernetes Databases
GitHub o Transit
ko)
Qe
/5)
JWT/OIDC Chy SSH
f?r_
P
PKI Time-based
Certificates OTP
11 Authorization o —
_ —
Authentication S S .
ecret Engines
Methods v — g
Policies

((iru

w Vv 1L

A=
H & @

al

Azure

Google
Cloud

AWS

Consul

Nomad

PKI
Certificates

Custom

https://learn.hashicorp.com/tutorials/vault/getting-started-intro?in=vault/getting-started

https://learn.hashicorp.com/tutorials/vault/getting-started-intro?in=vault/getting-started

Code Injection
OWASP #3

1 path available

* Sanitize user-controlled INPUts (reMOVe | rerecedcossie siping
HTML)

server.ts

* Use tools like LGTM to detect vulnerable | -

62 app.get('/transcripts/:id', (req, res) => {

data flows ;

64 const {id} = reg.params;
65 console.log(Handling GET /transcripts/:id id = ${id}’);
66 const theTranscript = db.getTranscript(parselInt(id));

* Use middleware that side-steps the
problem (e.qg. return data as JSON, client | stpz.
puts that data into React component)

1 1-65

66 const theTranscript = db.getTranscript(parselInt(id));
67 if (theTranscript === undefined) {

68 res.status(404).send(No student with id = ${id});

Cross-site scripting vulnerability due to user -provided value.

69 } else {
70 res.status(200).send(theTranscript);

) 71-169

Detecting Weaknesses In Apps with Static Analysis
LGTM + CodeQL

@ Igtm

Alerts 16

@ lgtm.com

e © O + O

Help Queryconsole Project lists My alerts .&1 Jonathan Bell

History Compare Integrations Queries

By default, only the files that also appear in the Alerts tab are listed here.
Files classified as non-standard, such as test code or generated files, are shown only when you check "Show excluded files".

Alert filters

No filter selected

Severity

Source root

Query

Tag

Show excluded files (?)

Name
@ public
BB src

package

Clear text storage of sensitive information
Sensitive information stored without encryption or hashing can expose it to an attacker.

Clear-text logging of sensitive information

Logging sensitive information without encryption or hashing can expose it to an attacker.
Export alerts ¥

Client-side cross-site scripting

Writing user input directly to the DOM allows for a cross-site scripting vulnerability.
Show heatmap

Client-side URL redirect
Client-side URL redirection based on unvalidated user input may cause redirection to malicious
web sites.

Code injection
Interpreting unsanitized user input as code allows a malicious user arbitrary code execution.

Download of sensitive file through insecure connection
Downloading executables and other sensitive files over an insecure connection opens up for
potential man-in-the-middle attacks.

16 756

https://Ilgtm.com

https://lgtm.com/

Weakly Protected Sensitive Data
OWASP #4

* Classify your data by sensitivity

* Encrypt sensitive data - Iin transit and at rest

* Make a plan for data controls, stick to It

* Software engineering fix: can we avoid storing sensitive data?

* Payment processors: Stripe, Square, etc

Using Components with Known Vulnerabilties

OWASP #5

e d®d

Vulnerabiity Vulnerabiiny You Find It You Fix It
Introduwced Discovered

* - »

Exgloits Hatwers
Published Attack

Bump junit from 412 to 4.13.1 #155

IRV el jon-bell merged 1 commit into master from dependabot/maven/junit-junit-4.13.1 (5 22 days ago

() This automated pull request fixes a security vulnerability

Only users with access to Dependabot alerts can see this message. Learn more about Dependabot security updates, opt out, or give us feedback.

L) Conversation 0 -0- Commits 1 =l Checks 2 Files changed 1
I,«‘ dependabot bot commented on behalf of github on Oct 13 Contributor () «--

Bumps junit from 4.12 to 4.13.1.
» Release notes

» Commits

&3 compatibility ' 93%

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually
by commenting @dependabot rebase .

Dependabot will also send you an email

GitHub security alert digest

mwand’s repository security updates from
the week of Mar 22 - Mar 29

neu-se organization

neu-se / covey-town-roomservice-buggy

Known security vulnerabilities detected

Dependency Version Upgrade to
xmlhttprequest-ssl < 1.6.2 my 1.6.2
Defined in

package-lock.json

Yulnerabilities
CVE-2021-31597 Critical severity
CVE-2020-28502 High severity

Dependency Version Upgrade to
hosted-git-info < 2.8.9 my 2.8.0
Defined in

package-lock.json

Yulnerabilities

CVE-2021-23362 Moderate severity

M= pmim b il = =10 L P | limmpsrd=s +~

Using Components with Known Vulnerabilties
Static analyses are imperfect

* Study: Vulnerable dependencies reported on a large, open source project,
OpenMRS. Compare results across tools.

Maven vulnerable dependencies npm vulnerable dependencies

Dependabot Dependabot

MSV - 0.14
OWASP DC - 0.06 NPM Audit -
4] snyk - 0.2 “
2 o OWASP DC -
8 Com. A - 0189 8
Steady - 0.16 Sk -
WhiteSource 4+ 22
Com.B m). 94 WhiteSource -
& & i\ Aa & & W2
& & i NI
«:F‘QZ’ o ‘ﬁzﬁ‘"
Ty

“A comparative study of vulnerability reporting by software composition analysis tools ”
Nasif Imtiaz, Seaver Thorn and Laurie Williams
https://dl.acm.org/doi/10.1145/3475716.3475769

https://dl.acm.org/doi/10.1145/3475716.3475769

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe that security Is a spectrum, and be able to define a realistic
threat model for a given system

* Evaluate the tradeoffs between security and performance In software
engineering

* Recognize the causes of and common mitigations for common
vulnerabilities in web applications

* Utllize static analysis tools to identify common weaknesses in code

Appendix: detalls of the XSS exploit

Step 1.
User Input:

[transcripts/%3Ch1%3ECongratulations!%3C/h1%3E You are the 1000th visitor to
the transcript site! You have been selected to receive a free IPad. To claim your prize
%3Ca
href="https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3
E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.in
nerHTML="%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th
%20visitor%20t0%20the%20transcript?%20site!%20You%20have%20been%20selec
ted%20t0%20receive%20a%20free%20iPad.%20T0%20claim%20your%20prize%?2
0%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCy0s%22%3Eclic
k%20here!%3C/a%3E";alert("You%20are%20a%20winner!");%3C/script%3E

XSS Detalls: step 2

app.get ('/transcripts/:id', (req, res) => {
// req.params to get components of the path
const {1d} = reqg.params;
const theTranscript = db.getTranscript(parselInt(id));
if (theTranscript === undefined) {

The COde on the Or|g|nal Sl|de } res.status (404) .send(No student with id = ${id} ") ;
sends the following response:

res.status (200) .send (theTranscript);

}
b)) s

No student with id =
<h1>Congratulations!</h1>
You are the 1000th visitor to the transcript site! You have been selected to receive a free iPad. To claim your prize
click herel

<script language="javascript'">

document.getRootNode().body.innerHTML = '<h1>Congratulations!</n1>You are the 1000th visitor to the transcript
site! You have been selected to receive a free iPad. To claim your prize click here!"',

alert("You are a winner!’);
</script>

XSS Step 3 (Chrome)

Chrome executes that javascript code, starting at
document.getRootNode() .body.innerHTML =

which replaces the entire page contents with the message, removing the “No
student with id =” part from the browser, and also rendering the popup “You
are a winner”

XSS Step 3 (Safari)

Safari refuses to execute the <script> block, so It renders a page that
looks like this (still bad, but less bad than Chrome):

No student with 1d =

Congratulations!

You are the 1000th visitor to the transcript site! You have been selected to receive a free 1Pad. To claim your prize click here!

